The scale-dependency of **Section Section Section** in the eyes of integrated species distribution models

Florencia Grattarola, Gurutzeta Guillera-Arroita, José Lahoz-Monfort, and Petr Keil

International Statistical Ecology Conference 2024

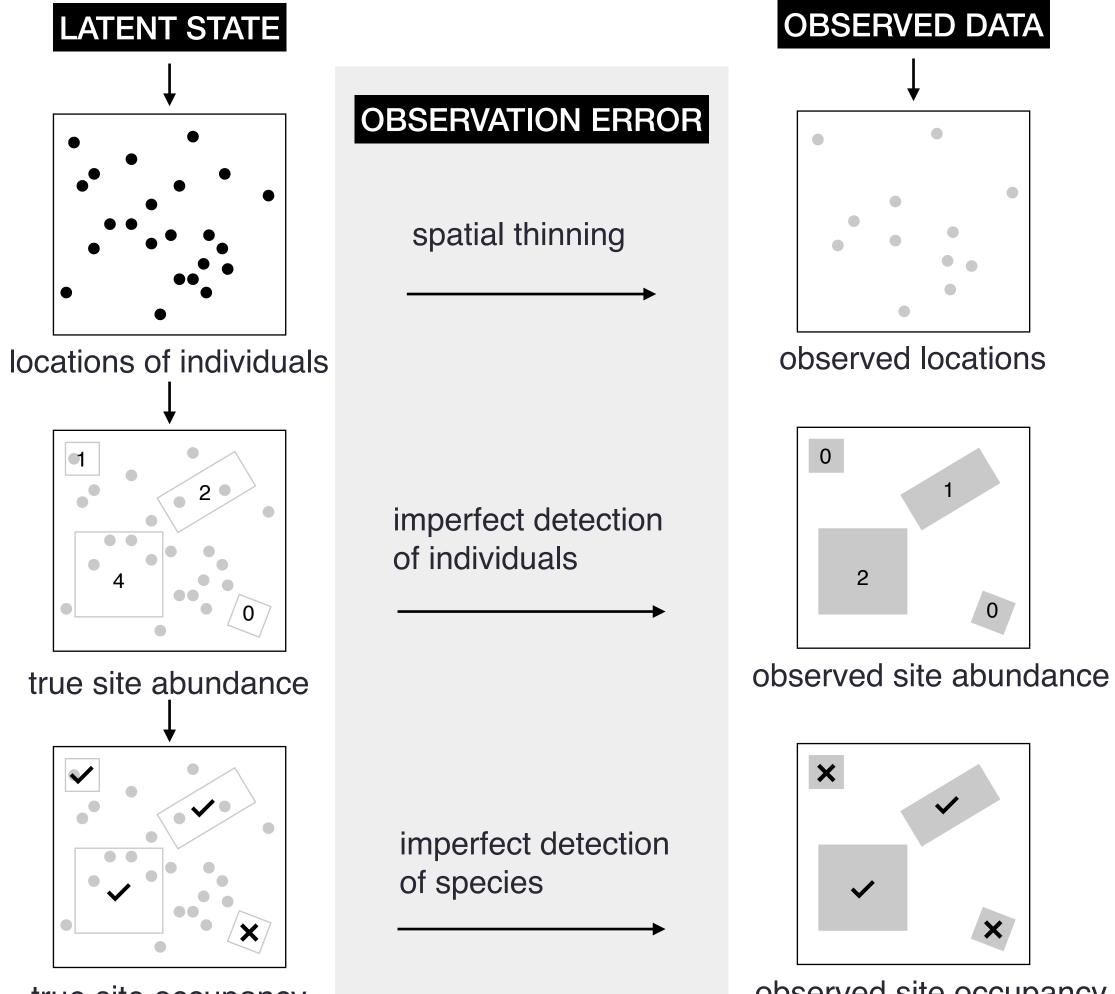
Czech University of Life Sciences Prague

Instituto Pirenaico de Ecología

Integrated species distribution model ISDM

Multiple data sources at multiple scales

Isaac et al. (2020)



true site occupancy

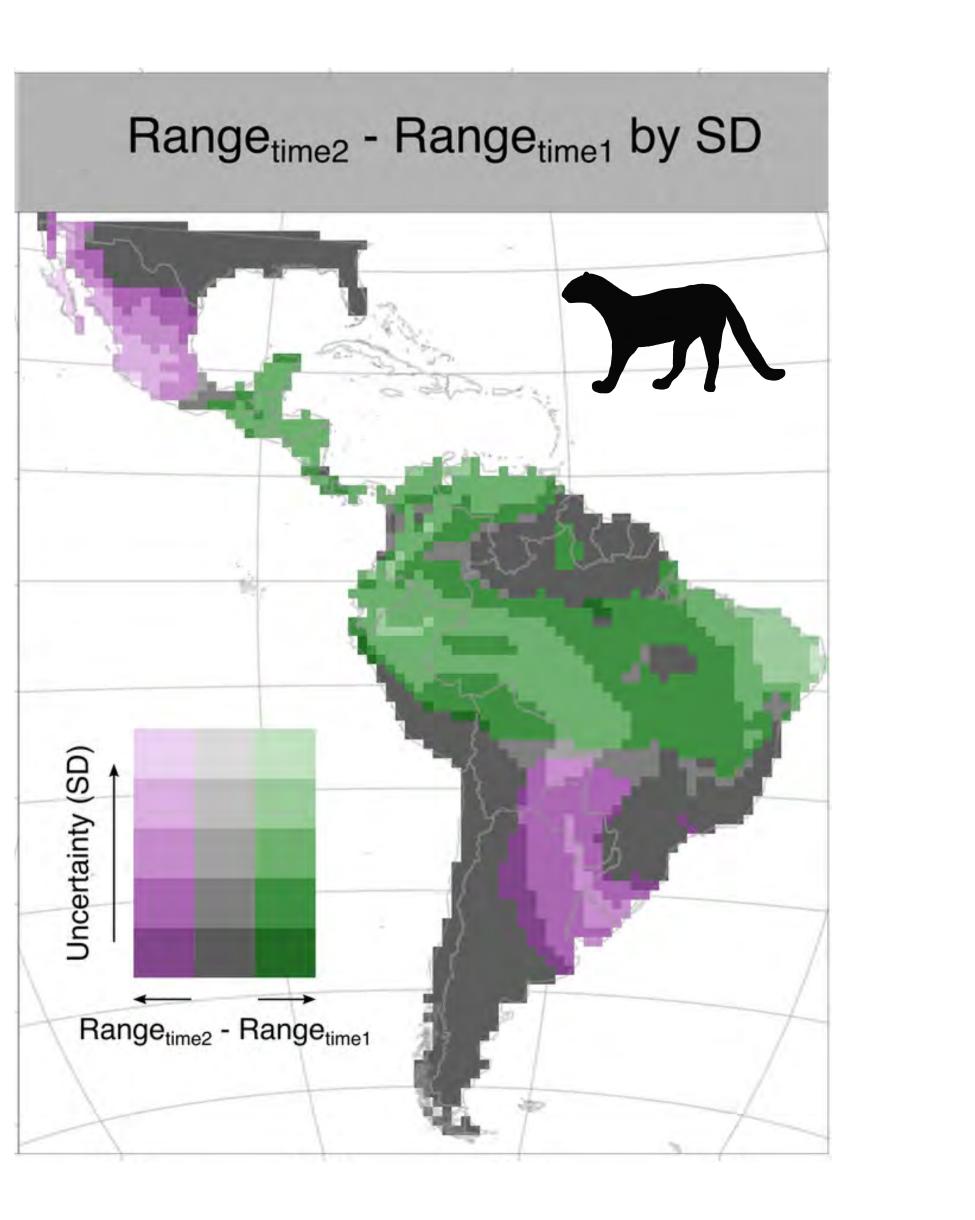
observed site occupancy

0

X

jaguarundi (Herpailurus yagouaroundi)

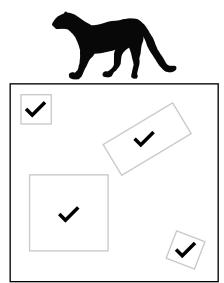
Grattarola, Florencia, Diana E. Bowler, and Petr Keil. 2023. 'Integrating Presence-Only and Presence–Absence Data to Model Changes in Species Geographic Ranges: An Example in the Neotropics'. Journal of Biogeography 50(9): 1561–75. doi:10.1111/jbi.14622.

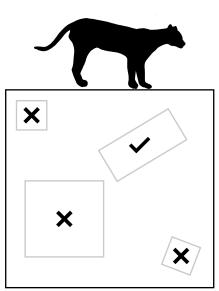


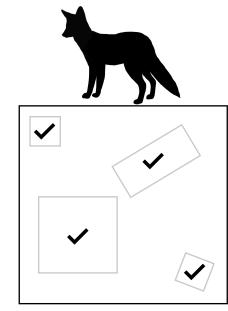
Joint species distribution model

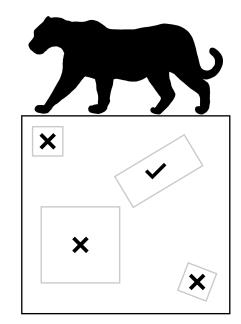
Multiple species (co-occurrence)

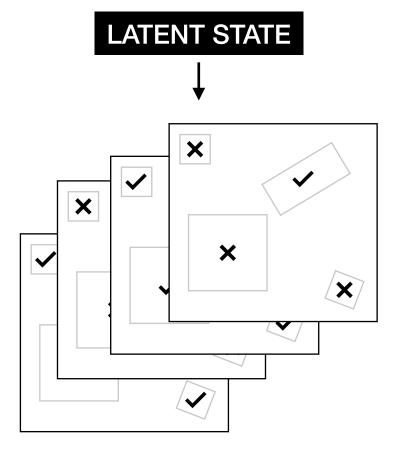
Warton et al. (2015)







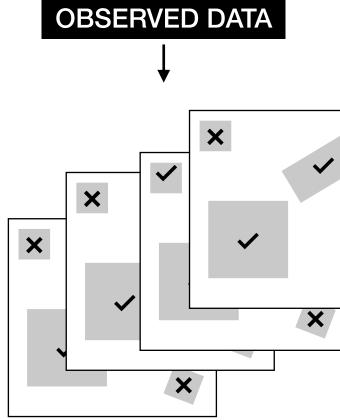




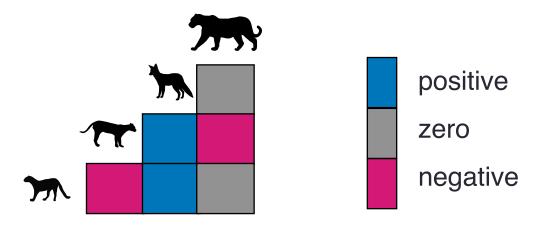
true site occupancy

OBSERVATION ERROR

imperfect detection of species



observed site occupancy



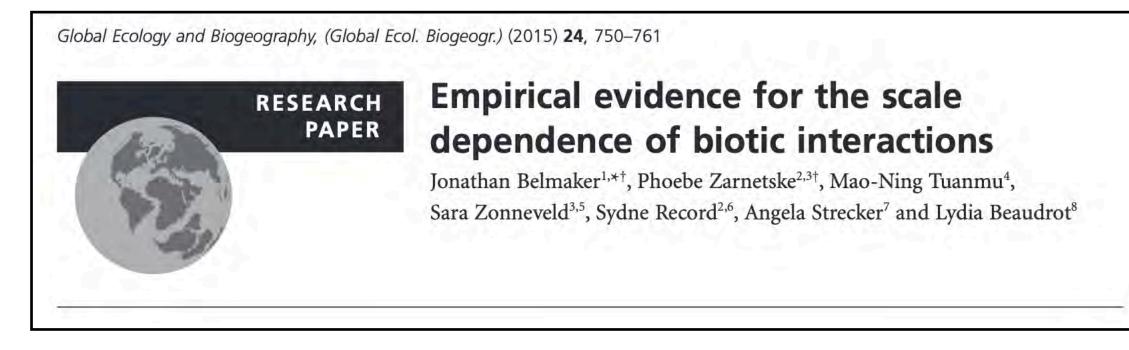
Basic and Applied Ecology 13 (2012) 371-379

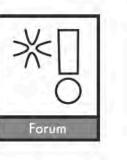
Basic and Applied Ecology

www.elsevier.com/locate/baae

Patterns of coexistence of two species of freshwater turtles are affected by spatial scale

P. Segurado^{a,b,*}, W.E. Kunin^c, A.F. Filipe^d, M.B. Araújo^{a,e,f}





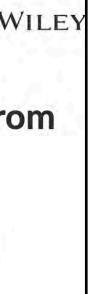
Ecography 37: 406–415, 2014 doi: 10.1111/j.1600-0587.2013.00643.x © 2013 The Authors. This is an Online Open article Subject Editor: Carsten Rahbek. Accepted 21 October 2013

The geographic scaling of biotic interactions

Miguel B. Araújo and Alejandro Rozenfeld

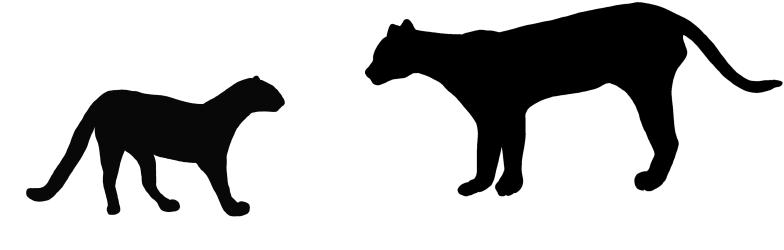
ECOGRAPHY
Forum
Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments?
Damaris Zurell, Laura J. Pollock and Wilfried Thuiller

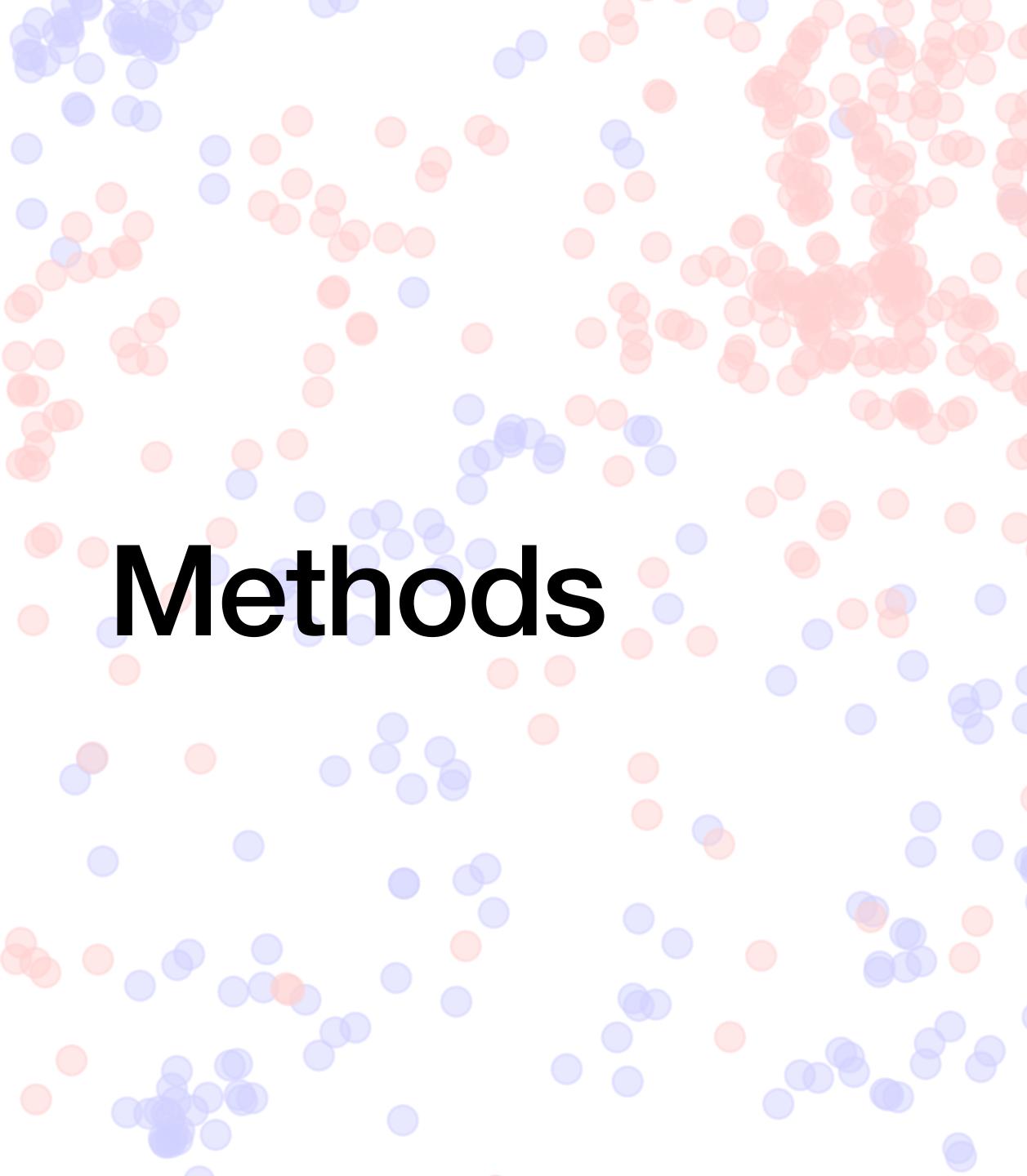
ogy	RESEARCH ARTICLE	Journal of Biogeography
s from ling	Species associations in joint species dis missing variables to conditional predict	
an ^{1,3} 💿	Clément Vallé ¹ Giovanni Poggiato ^{2,3} Wilfried Thu Karine Princé ¹ Isabelle Le Viol ^{1,4}	uiller ² Frédéric Jiguet ¹



Our goal ISDM + JSDM

Can fine-scale associations be detected using coarse-grain data with IJSDMs?





9 @flograttarola | @ ecoevo.social/@flograttarola

Methods

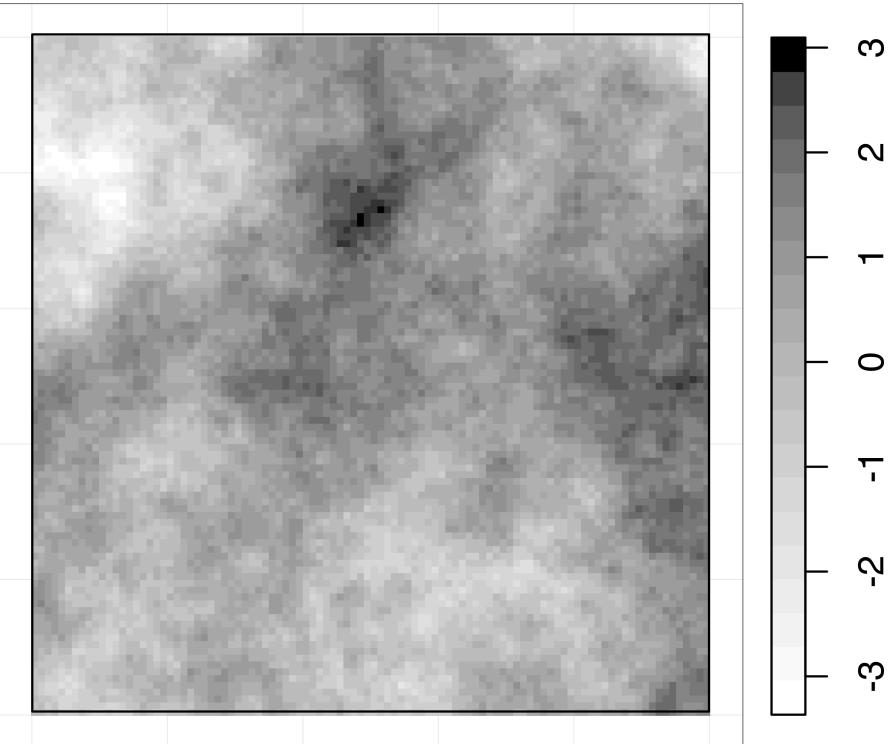
- 1. Data simulation:
 - A. Environmental predictor
 - B. Species data
- 2. Fit an IJSDM
- 3. Check the identifiability and coverage of model parameters

Data simulations Environmental predictor

• We simulated a hypothetical temperature predictor as a spatially autocorrelated environmental raster at a resolution of 100x100 grid cells (finegrain).

Note: We used the same raster for all simulations

temperature



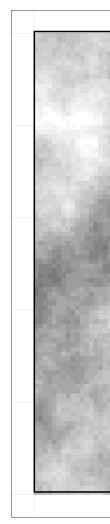
Data simulations Species data

Point pattern

 $egin{aligned} \lambda_1 &= exp^{(lpha_1+eta_1 imes temp+e_1)}\ \lambda_2 &= exp^{(lpha_2+eta_2 imes temp+e_2)} \end{aligned}$

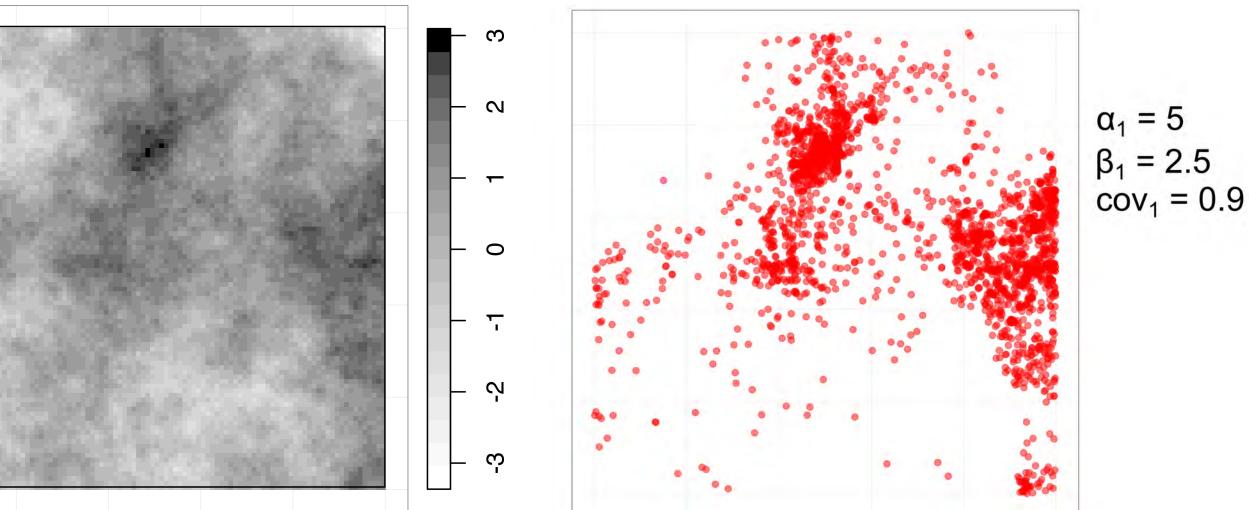
Correlated error

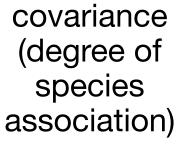
 var_1 $e_{ij} \sim \mathsf{MVN}(0, \Sigma)$ $\Sigma =$ $cov_{2,1}$



temperature

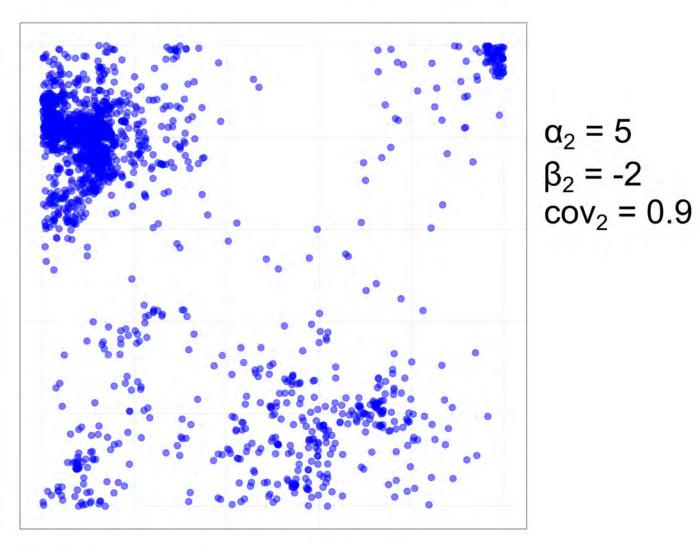
point pattern of species₁



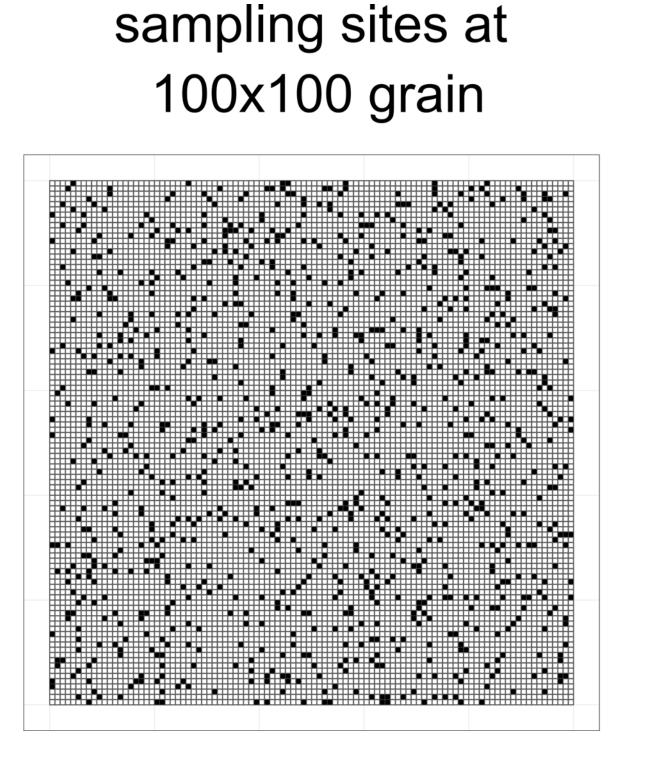


$$egin{array}{c} cov_{1,2} \ var_2 \end{array}$$

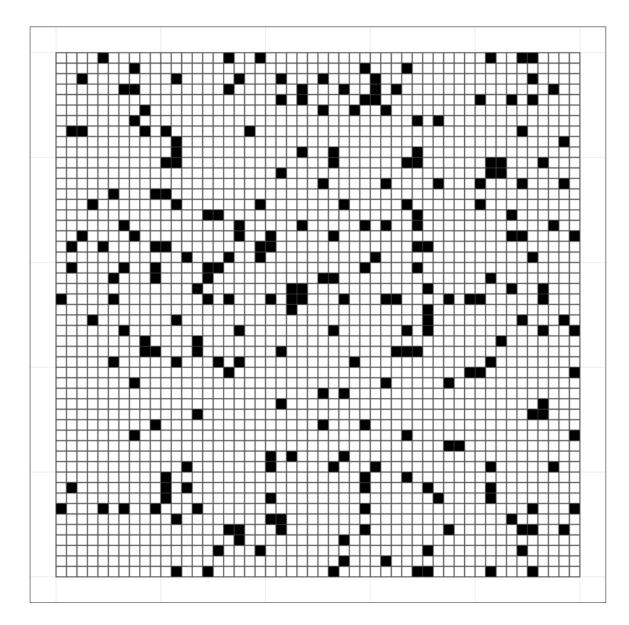
point pattern of species₂



Data simulations Sampling sites of varying grain size

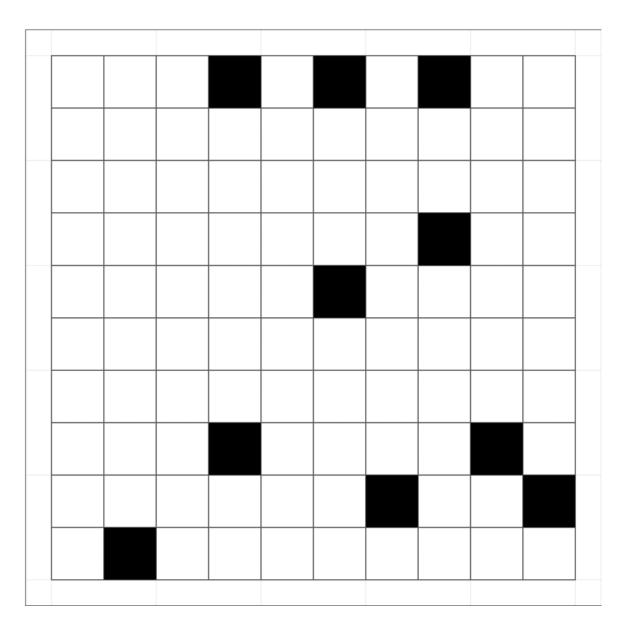


sampling sites at 50x50 grain



black cells are 10% of cells, representing hypothetical discrete sampling sites

sampling sites at 10x10 grain



IJSDM Abundance

OBSERVED DATA

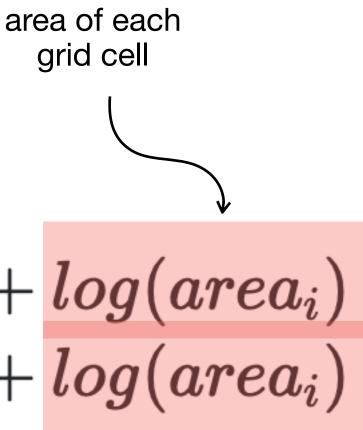
 $AB_{i,j} \sim \mathsf{Poisson}(\phi_{i,j})$

LATENT STATE

 $log(\phi_{i,1}) = lpha_1 + eta_1 imes temp_i + e_{i,1} + log(area_i)$ $log(\phi_{i,2}) = lpha_2 + eta_2 imes temp_i + e_{i,2} + log(area_i)$

Based on ideas from Bowler et al. (2019), Grattarola et al. (2023), and Pollock et al. (2014)

sites, i, where $i \in 1:n_i$ species, j, where $j \in 1:n_j$



$$e_{i,j} \sim \mathsf{MVN}(0, au)$$
 $au = \Sigma^{-1}.$

IJSDM Presence-absence

OBSERVED DATA

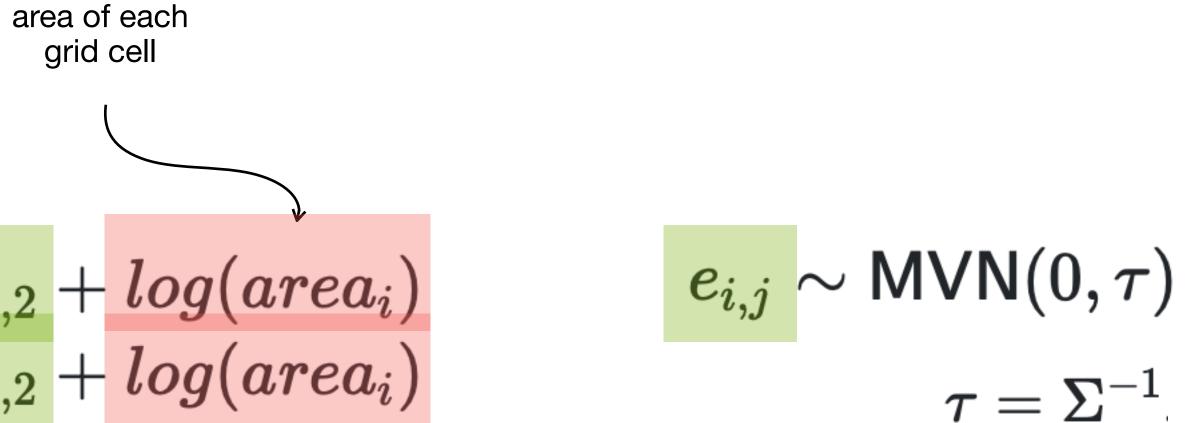
 $PA_{i,j} \sim \mathsf{Bernoulli}(\psi_{i,j})$

LATENT STATE

 $cloglog(\psi_{i,1}) = lpha_1 + eta_1 imes temp_i + e_{i,2} + log(area_i)$ $cloglog(\psi_{i,2}) = lpha_2 + eta_2 imes temp_i + e_{i,2} + log(area_i)$

Based on ideas from Bowler et al. (2019), Grattarola et al. (2023), and Pollock et al. (2014)

sites, i, where $i \in 1:n_i$ species, j, where $j \in 1:n_j$



Methods

Data simulations: parameter set

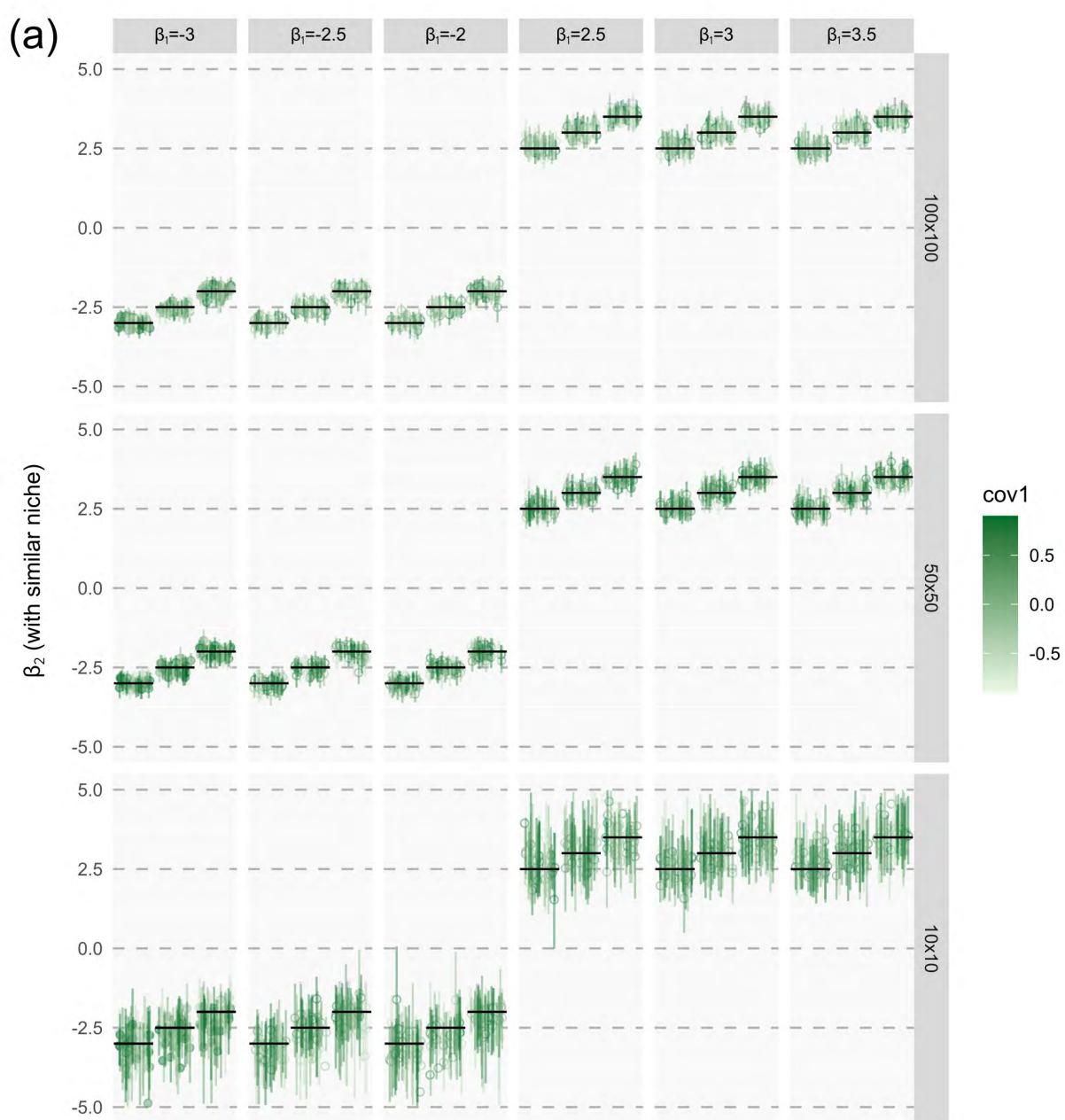
	Parameter	Description	Values in the simulation
	α	Intercept (always $\alpha_1 = \alpha_2$)	5 (fixed)
1	eta_1 and eta_2	The species-specific effect (slope) of the environmental predictor driving the point process intensity	-3, -2.5, -2, 2.5, 3, 3.5
	var	Residual variance (with $var_1 = var_2$)	1 (fixed)
2	COV	Residual covariance (with $cov_{1,2} = cov_{2,1}$) representing species association	-0.9, -0.5, 0, 0.5, 0.9
3	grid	The grain at which we sampled the species data	10x10, 50x50, 100x100

Note: using 200 cores, the abundance model took 10 hours to run, and the presence-absence model took 23 hours

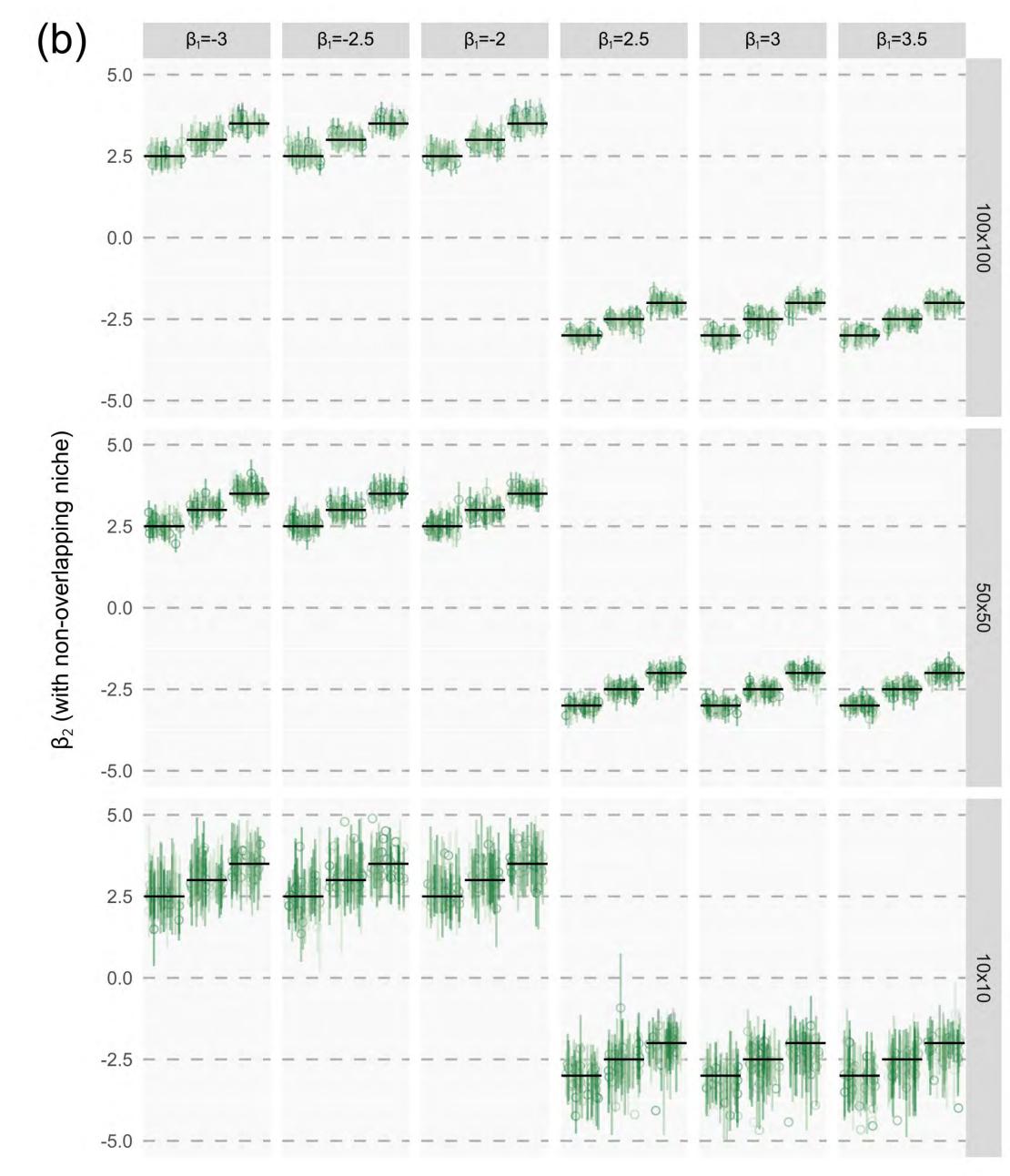
540 combinations repeated 10x, resulting in 5,400 simulation runs

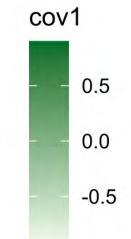
9 @flograttarola | @ ecoevo.social/@flograttarola

with **similar** niche

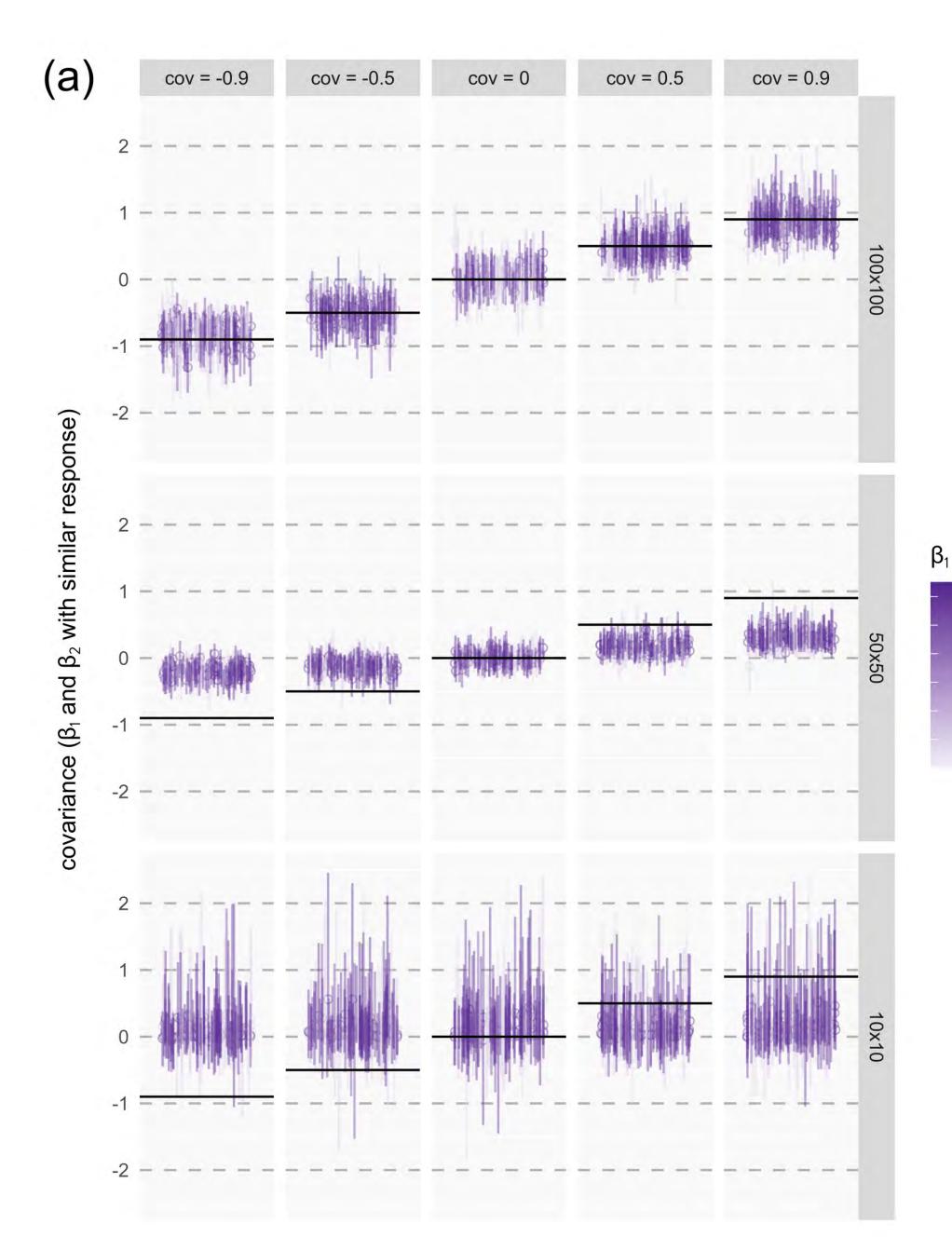


with non-overlapping niche

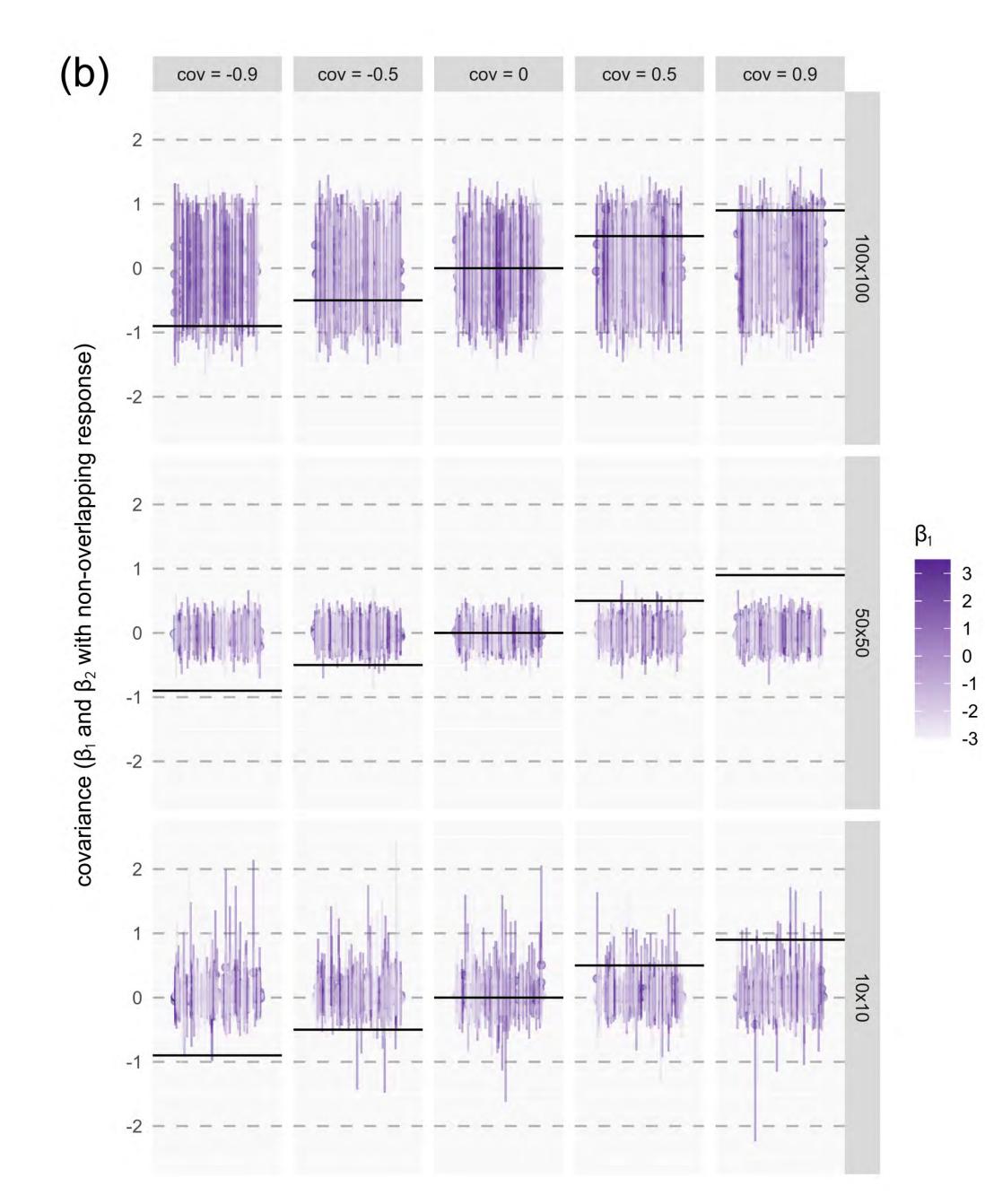


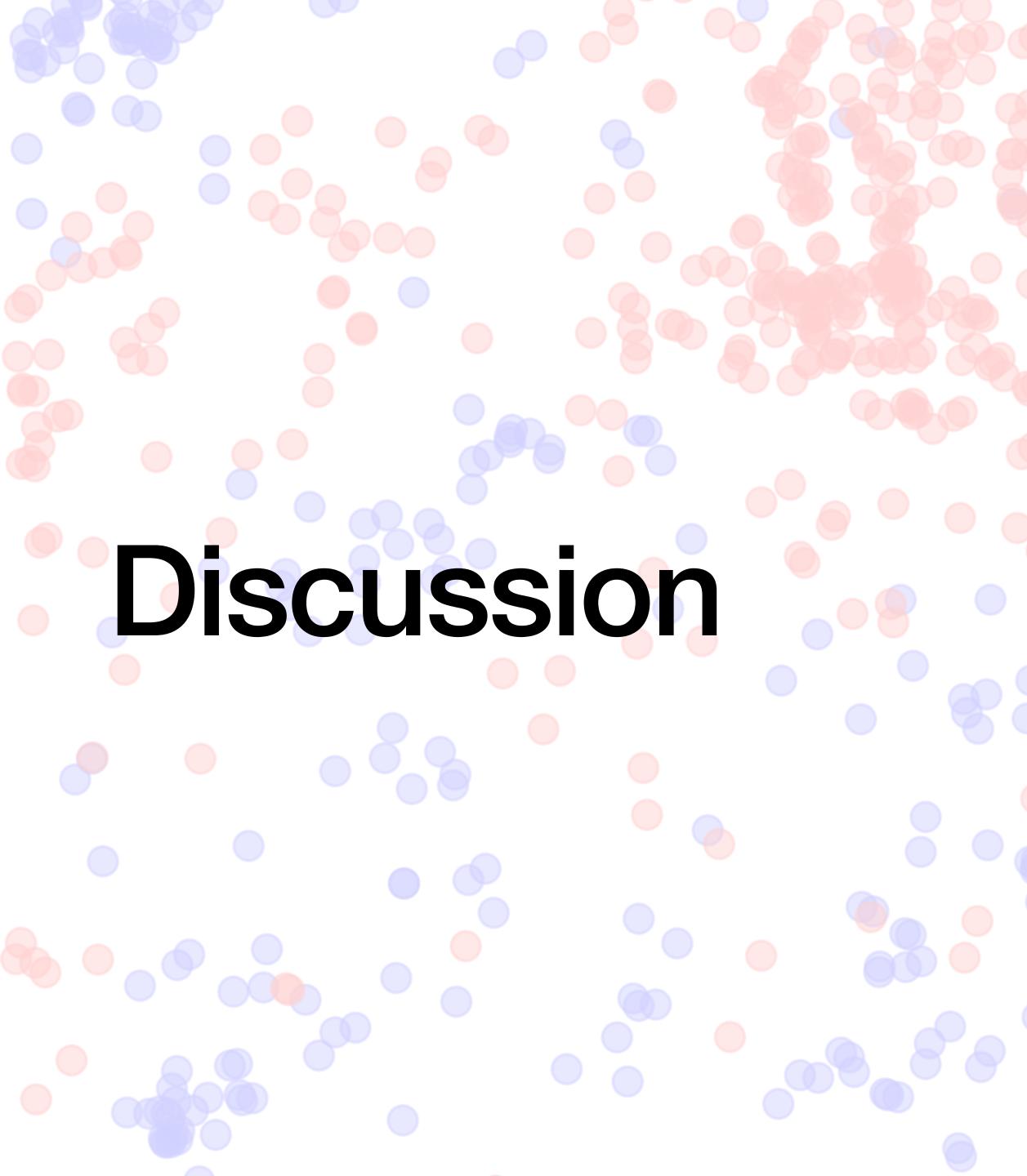


with similar niche



with non-overlapping niche





9 @flograttarola | @ ecoevo.social/@flograttarola

Discussion

Can fine-scale associations be detected using coarse-grain data with IJSDMs?

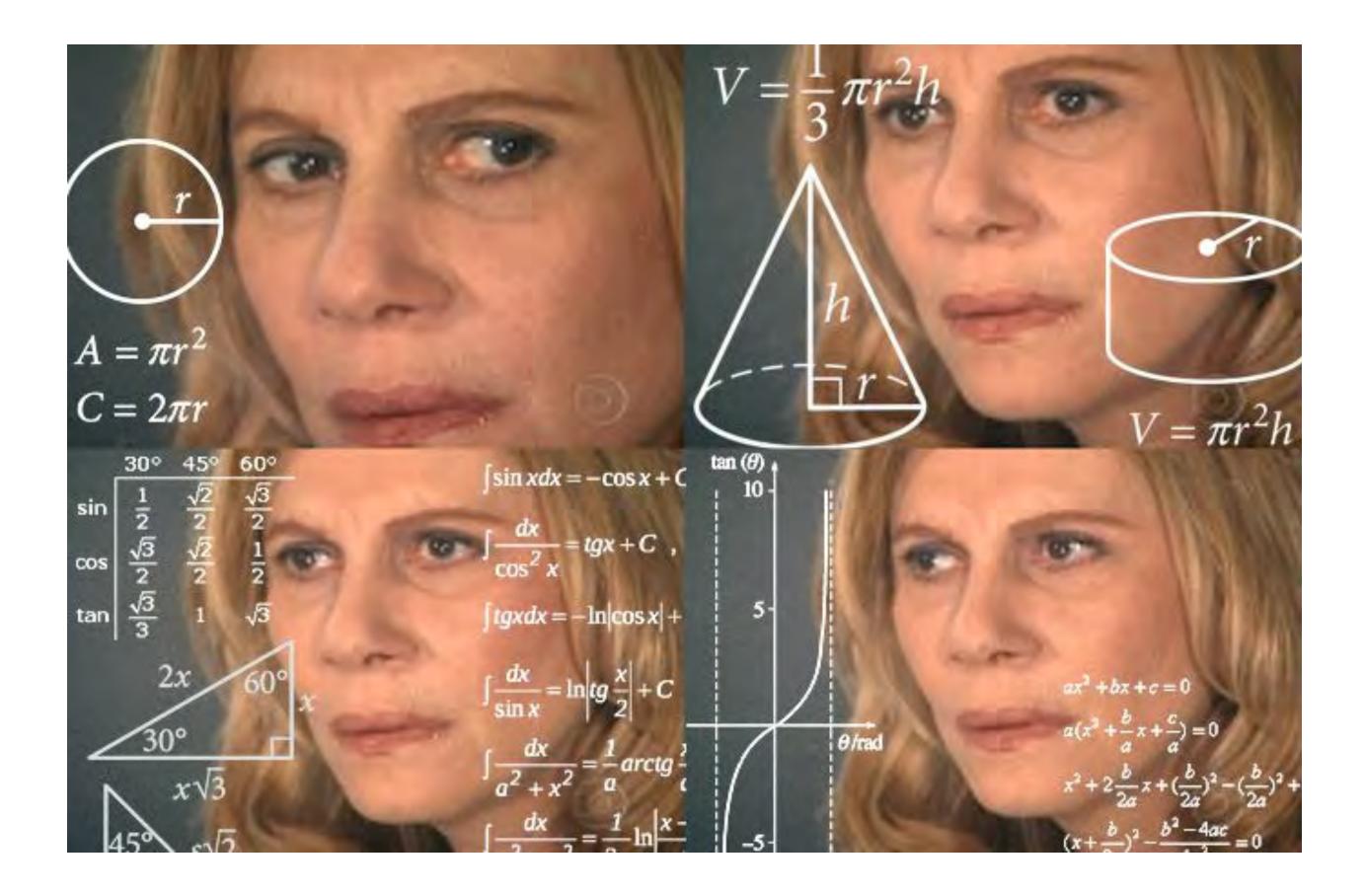
The correct species associations can **only** be detected using:

- 1. fine-grain data (at the grain of the simulated interaction) and
- 2. when both species respond similarly to the environment.

incorrect estimates of the species' associations.

Thus, running the IJSDM with data sources at coarse resolutions can provide

Discussion Why does the association disappear towards coarse grains?

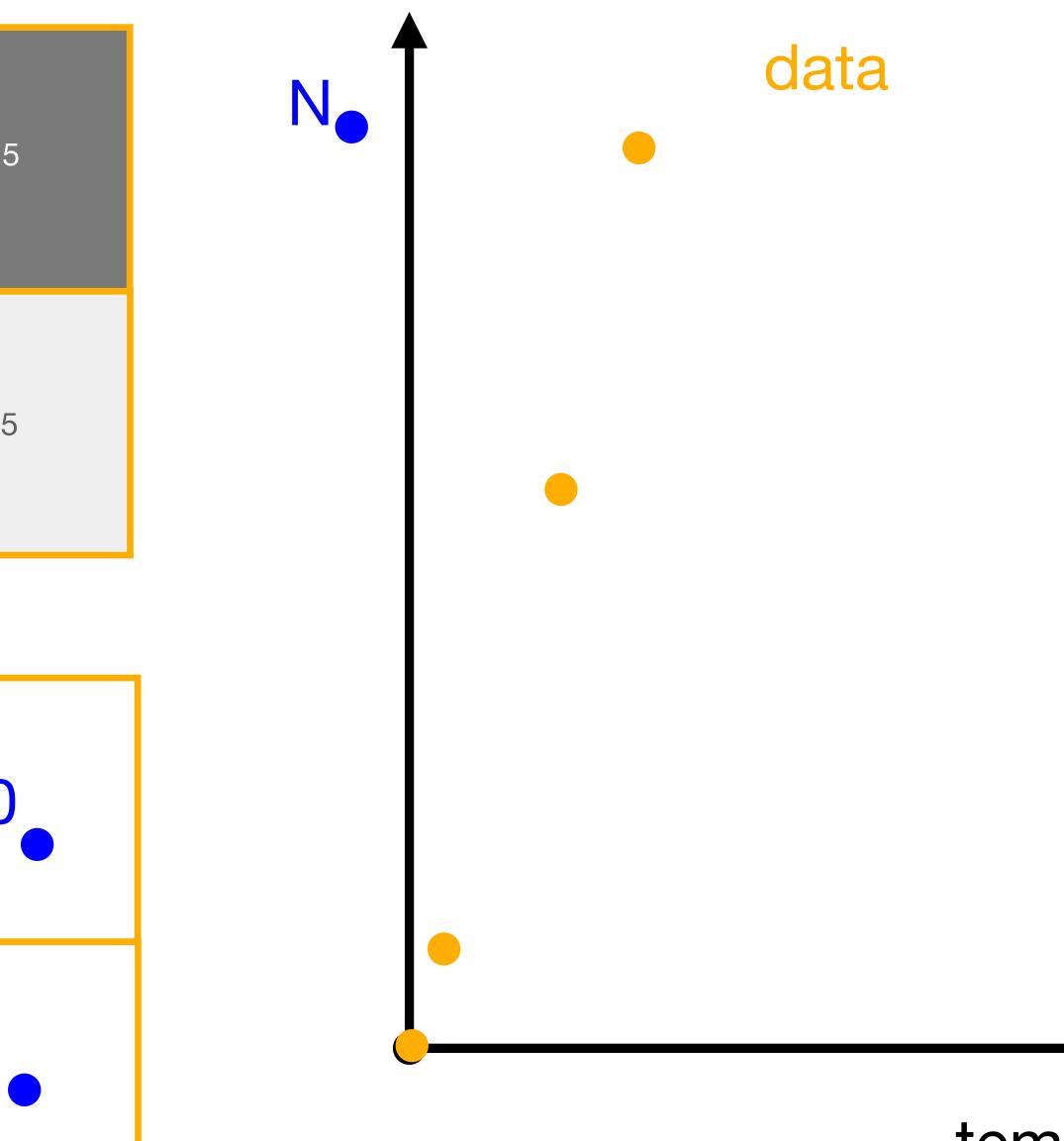


tempcoarse

1.5	2.
0	0.2

6	10
	1

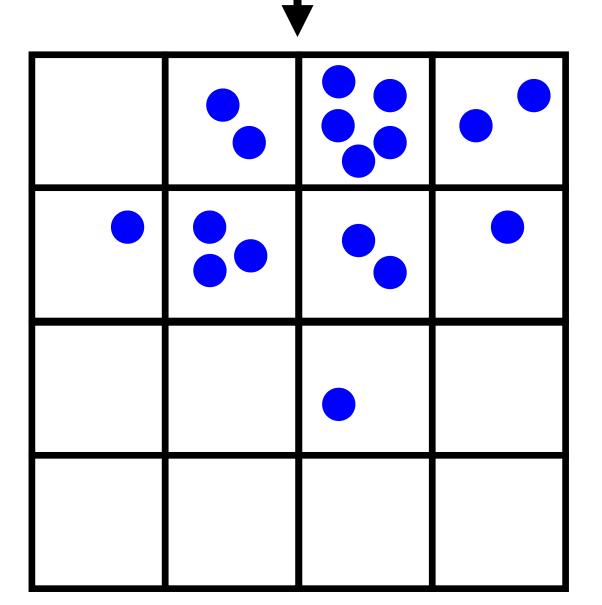
data



temp

temp_{fine}

0	2	4	2
1	3	2	1
0	0	1	0
0	0	0	0



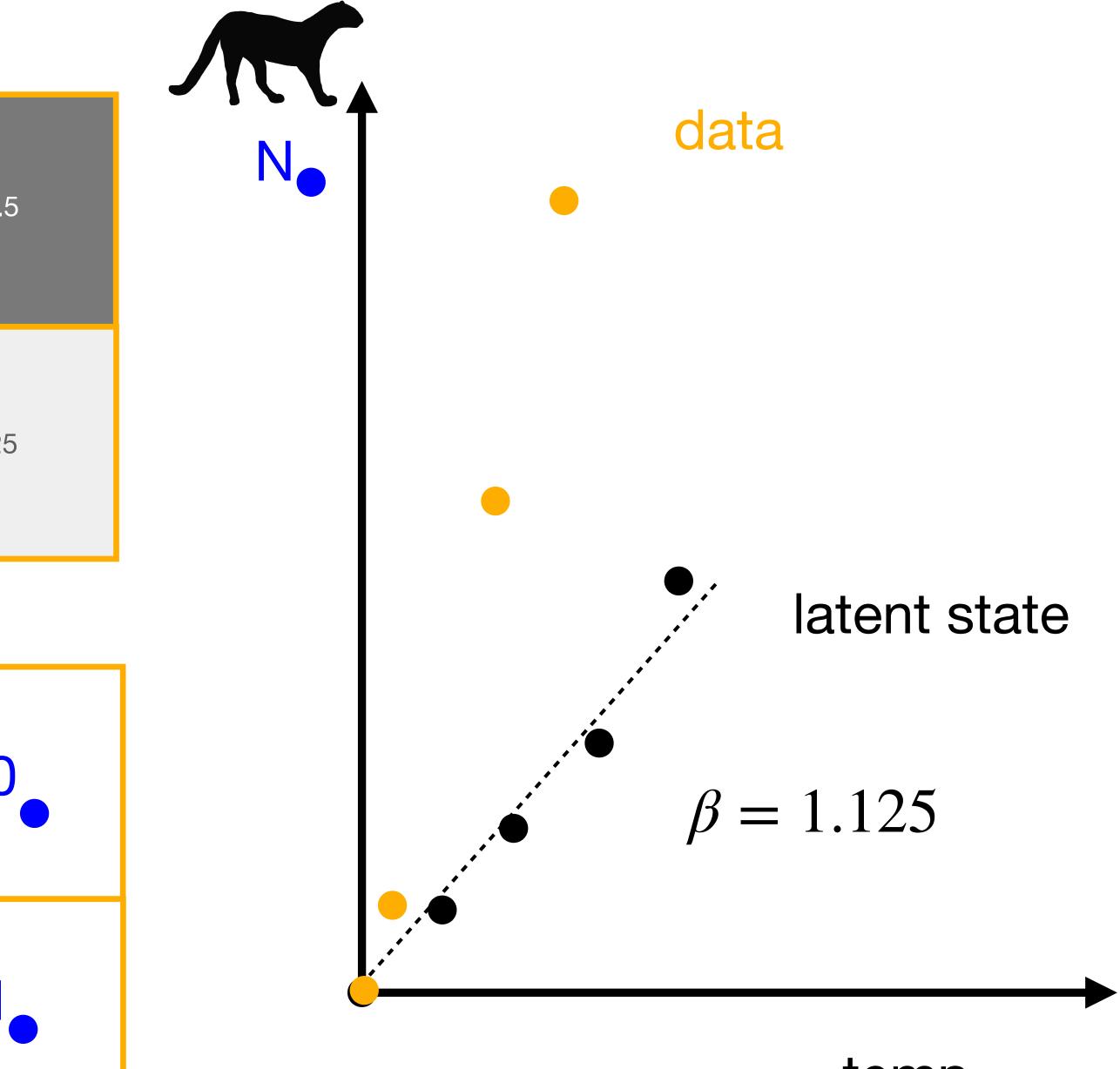
latent state

tempcoarse

1.5	2.
0	0.2

6	10

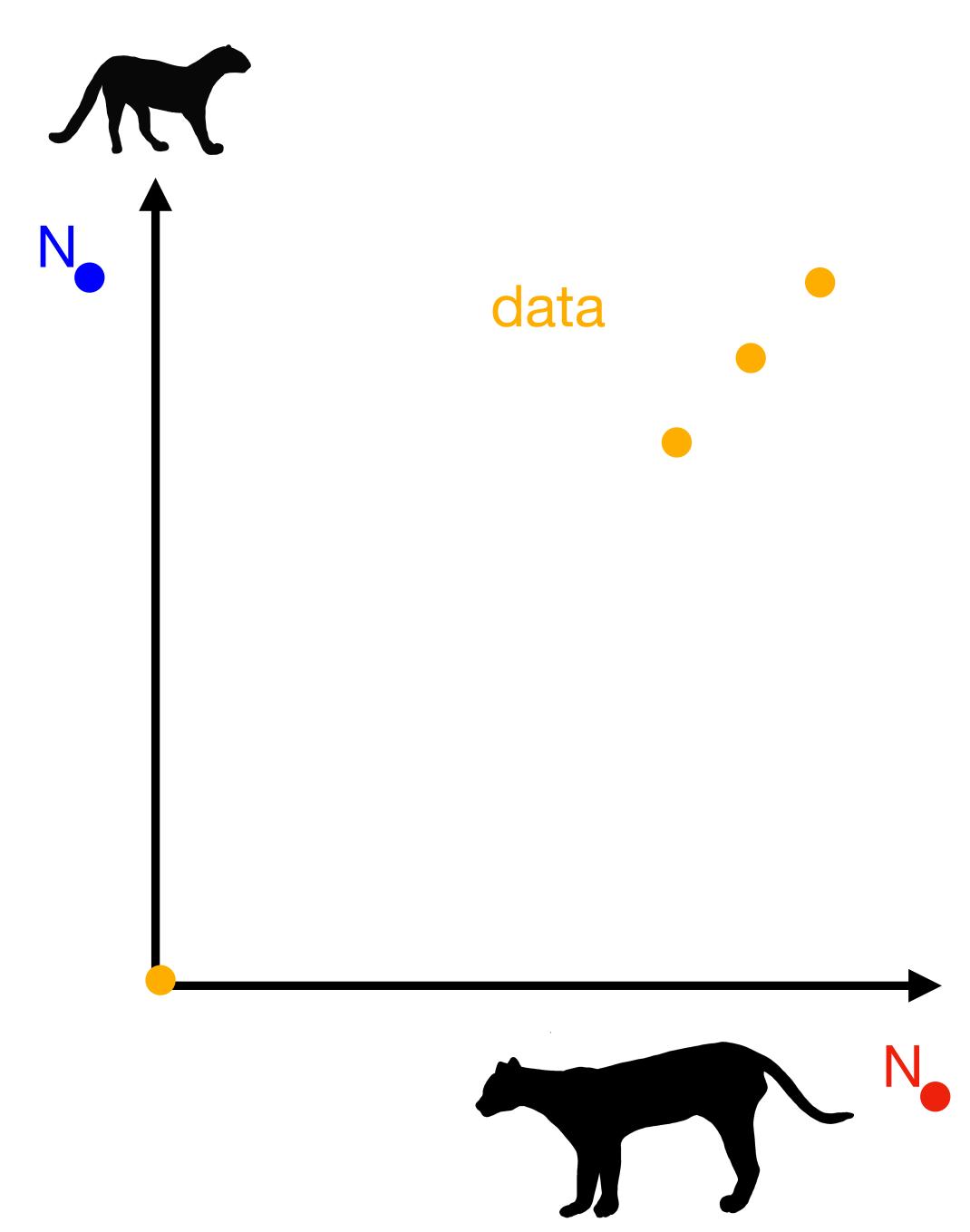
data

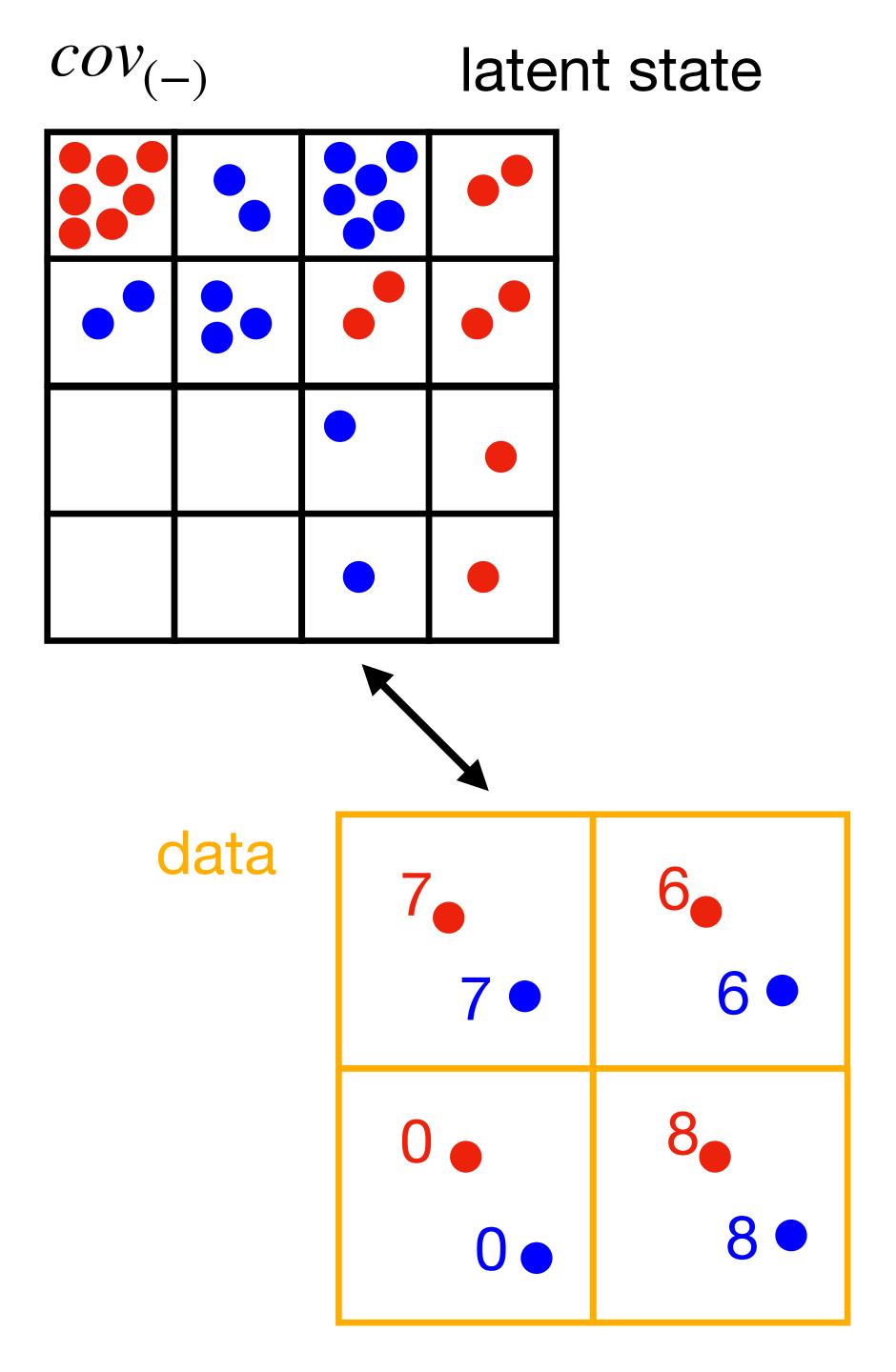


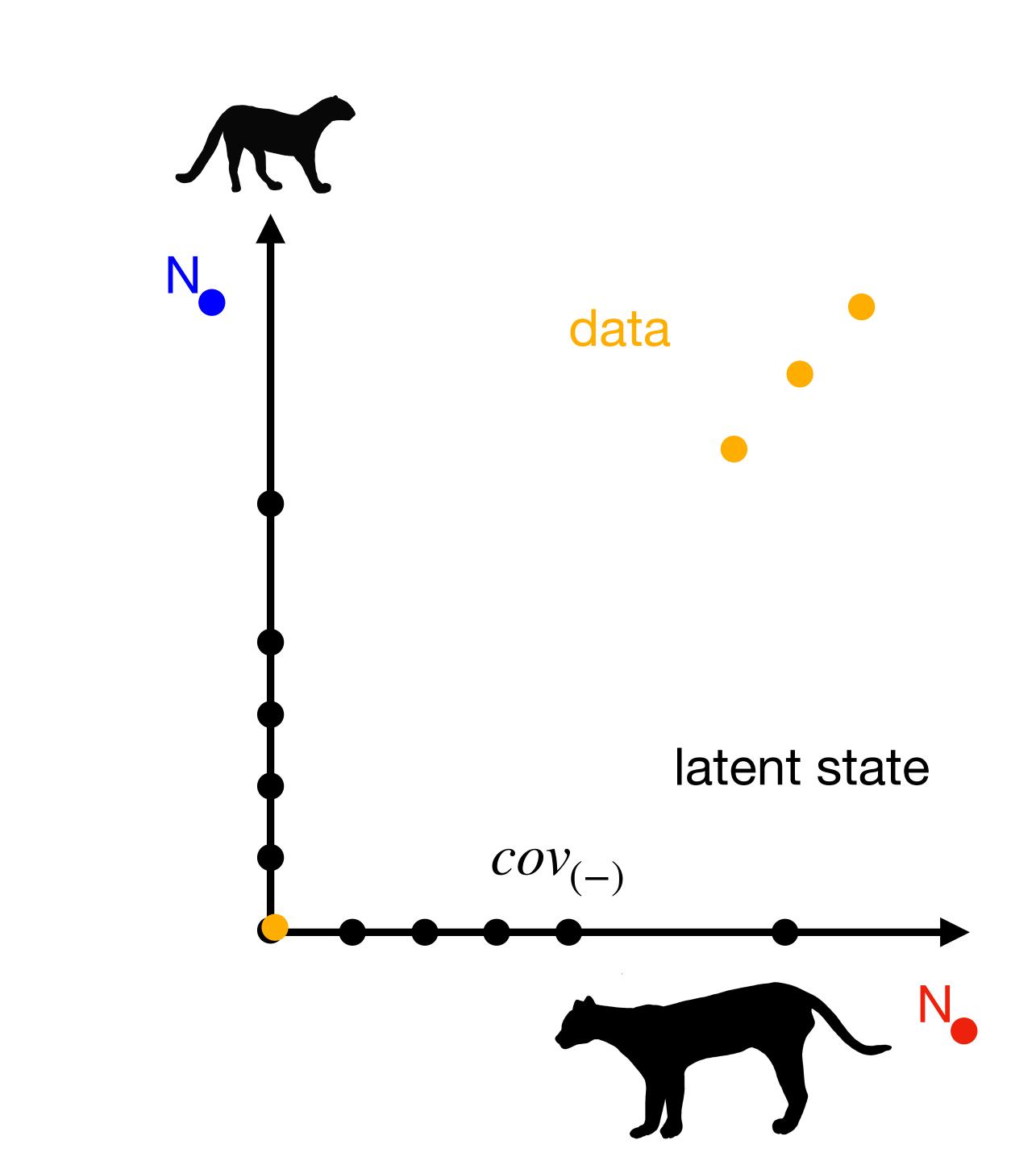
temp

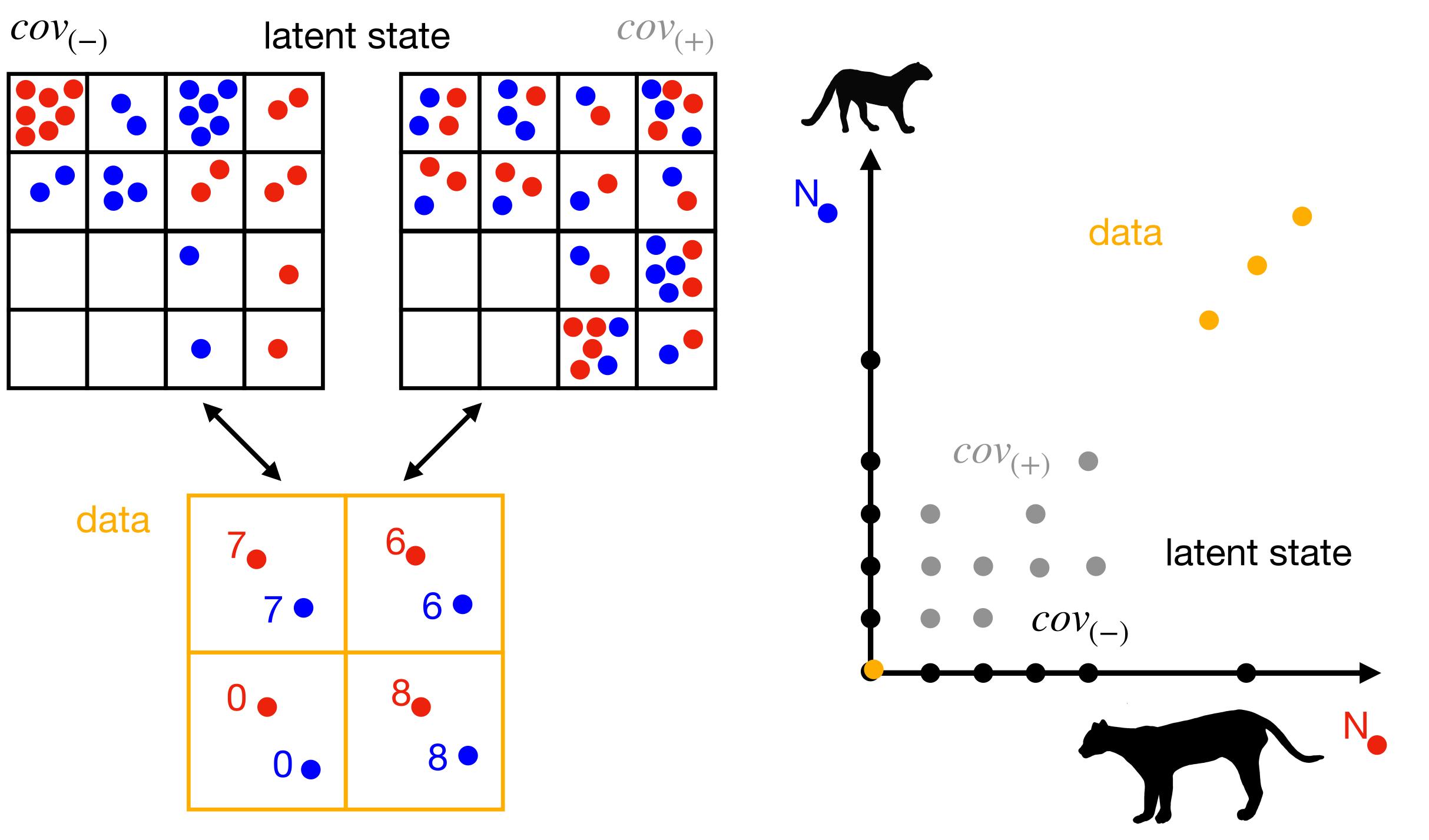
data

7 7 7 •	6 6
0 • 0 •	8

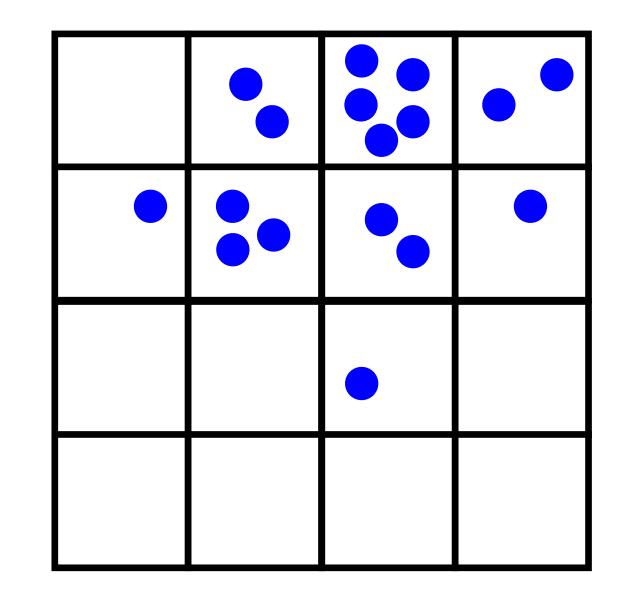


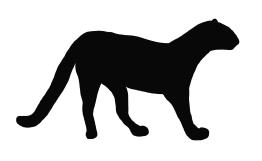


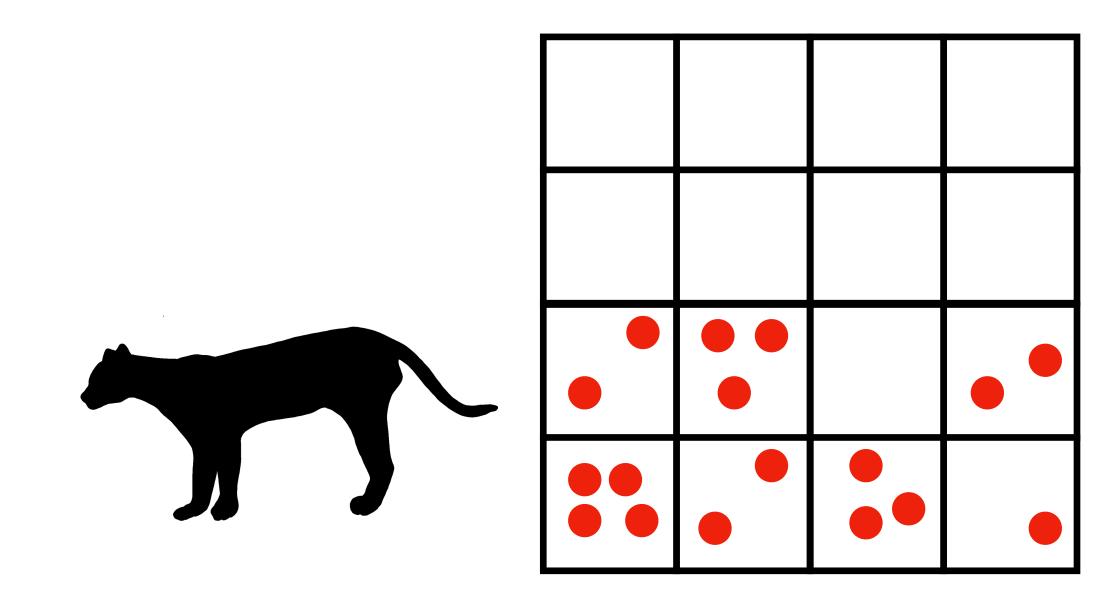




Discussion The effect of similar vs opposite niche







Take-home messages

It's not possible to get the fine-grain species associations from coarse-grain data using IJSDMs.

Perhaps by including some fine-scale data in the IJSDM, the model can correct itself by borrowing information.

Gracias!

Czech University of Life Sciences Prague

MOBI Lab

BEAST Project

flograttarola.com | GitHub github.com/bienflorencia | 🕑 @flograttarola | 🖓 ecoevo.social/@flograttarola

Thanks to my co-authors: Gurutzeta Guillera-Arroita, **José Lahoz-Monfort, and Petr Keil**

Acknowledgements

Thanks to Gabriel Ortega Solís for helping with the MOBI Lab server.

Funding

European Research Council. Grant Number: 101044740

Credits

Photos jaguraundi (Herpailurus yagouaroundi) by hhulsberg (CC-BY-NC) and ocelot (Leopardus pardalis) by quiltedquetzal (CC-BY-NC) via iNaturalist. Silhouettes by Gabriela Palomo-Muñoz (CC BY-NC) and Margot Michaud (CC0), via PhyloPic.

Funded by the European Union

European Research Council Established by the European Commission

